Skip to contents

All functions

abc_stochastic_model() plot(<abc_stochastic_model>)
Approximate Bayesian Computation for Stochastic Model
add_labeled_bars_age_group()
Add Labeled Bars to a ggplot Object by Age Group
build_age_reactions()
get reaction list for an age-structured SEIR model
calculate_age_structured_beta()
Using the next generation matrix approach, calculates beta based on a fixed R0
create_age_initial_conditions()
Convert a vector of each state into a labeled state using age_groups labels
get_daily_cases()
Compute Daily Incident Cases from Cumulative Simulation Output
load_model_params()
load model parameters
plot_contact_matrix()
Plot a Contact Matrix
plot_prior_posterior()
Plot Prior and Posterior Distributions with Optional True Value
projection_stochastic_model() add_projection_date() plot(<projection_stochastic_model>) plot_projections() plot_projection_samples() plot_projections_by_age_group() create_projection_quantiles() projection_quantiles_by_age_group() projection_by_age_group() create_age_group_column() collapse_states() difference_of_states() reset_state()
Project a Stochastic Model Forward in Time
rtruncnorm()
Sample from a Truncated Normal Distribution
scenario_stochastic_model()
Create a set of scenarios that can be incorporated into projection_stochastic_model()
stochastic_model() print(<stochastic_model>) run_sim() update_parameters() update_state() interpolate_run_by_day()
Create a stochastic model
vaccinate_initial_conditions()
change vaccination coverage in initial conditions